2[k-(4k+7)+1]=2(k+6)

Simple and best practice solution for 2[k-(4k+7)+1]=2(k+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2[k-(4k+7)+1]=2(k+6) equation:


Simplifying
2[k + -1(4k + 7) + 1] = 2(k + 6)

Reorder the terms:
2[k + -1(7 + 4k) + 1] = 2(k + 6)
2[k + (7 * -1 + 4k * -1) + 1] = 2(k + 6)
2[k + (-7 + -4k) + 1] = 2(k + 6)

Reorder the terms:
2[-7 + 1 + k + -4k] = 2(k + 6)

Combine like terms: -7 + 1 = -6
2[-6 + k + -4k] = 2(k + 6)

Combine like terms: k + -4k = -3k
2[-6 + -3k] = 2(k + 6)
[-6 * 2 + -3k * 2] = 2(k + 6)
[-12 + -6k] = 2(k + 6)

Reorder the terms:
-12 + -6k = 2(6 + k)
-12 + -6k = (6 * 2 + k * 2)
-12 + -6k = (12 + 2k)

Solving
-12 + -6k = 12 + 2k

Solving for variable 'k'.

Move all terms containing k to the left, all other terms to the right.

Add '-2k' to each side of the equation.
-12 + -6k + -2k = 12 + 2k + -2k

Combine like terms: -6k + -2k = -8k
-12 + -8k = 12 + 2k + -2k

Combine like terms: 2k + -2k = 0
-12 + -8k = 12 + 0
-12 + -8k = 12

Add '12' to each side of the equation.
-12 + 12 + -8k = 12 + 12

Combine like terms: -12 + 12 = 0
0 + -8k = 12 + 12
-8k = 12 + 12

Combine like terms: 12 + 12 = 24
-8k = 24

Divide each side by '-8'.
k = -3

Simplifying
k = -3

See similar equations:

| 3x-72=-4x+54 | | 12x-16x=27 | | 2x^2=4-6x | | 16x+32x+12=3x-29 | | 6=2y+42+2y | | 45x^2-75=0 | | 5(15+17x)-14(10x+72)=-13x-11+44 | | 44cm^2=(m+3)(m-3) | | 45x^2-76=0 | | 14=3(x-2)-(x-8) | | 7(7x-4)=49 | | 50-35m+5m^2= | | -3(1-6r)=-147 | | 6x+4=15x-25 | | 2p-2(6-3p)=3(p-2)-36 | | -6(7+x)=30 | | 7=4a+3a | | 3x-72=-4+54 | | 47=-3+8u | | 16(15n-71)=-6(28-40n) | | 2x+4+3x-1=12 | | -4x+5x=-5(3x-6)-2(-8x+4) | | 4a-13=2a+1 | | v^2=-9v-18 | | -2x+5x-55=29 | | 9x+3x=-32 | | 70-24m+2m^2= | | 4(10)+30= | | 8=-4k-4k | | -5(7a-6)=65 | | 15d-6=18+7d | | 7n^2+210=-77n |

Equations solver categories